On the structure of generalized effect algebras and separation algebras

Peter Jipsen joint work with Sarah Alexander and Nadiya Upegui

Chapman University

Ordina, Groningen, the Netherlands October 29 - November 1, 2018

Outline

- Partial Algebras
- Separation algebras
- Generalized effect algebras
- Constructing all GPE-algebras of size n
- Some theorems obtained from this output

What is a Partial Algebra?

- A partial operation g of arity n on a set A is a function from a subset D(g) of A^n to A.
- The notation $g: A^n \longrightarrow A$ is used to indicate that g is an n-ary partial function on A.
- A partial algebra is a pair $\mathbf{A} = (A, \mathcal{F}^{\mathbf{A}})$ where A is a set and $\mathcal{F}^{\mathbf{A}}$ is a set of operations on A containing at least one partial operation.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	-
1 2 3	1 2 3	3	-	-
3	3	-	-	-

Separation Algebras

A separation algebra (or SA) $\mathbf{A}=(A,+,0)$ is a partial algebra such that for all $x,y,z\in A$

(canc)
$$x + y$$
 defined and $x + y = x + z \implies y = z$
(comm) $x + y$ defined $\implies x + y = y + x$
(asso) $(x + y) + z$ defined $\implies (x + y) + z = x + (y + z)$
(iden) $x + 0 = x$

In short, an SA is a cancellative commutative partial monoid.

Separation algebras are naturally pre-ordered by

$$x \le y \iff \exists w \ x + w = y$$

Any abelian group is a (total) separation algebra (\leq relates all elements).

Generalized Effect Algebras

 $(\mathbb{N},+,0)$ is another (total) separation algebra.

A generalized effect algebra (or GEA) $\mathbf{A}=(A,+,0)$ is a separation algebra such that for all $x,y\in A$ we have

(positivity)
$$x + y = 0 \implies x = 0 = y$$

GEAs are natually partially ordered by

$$x \le y \iff \exists w \ x + w = y$$

An effect algebra is a GEA with a top element, denoted 1.

Can define x' by $y = x' \iff x + y = 1$.

Examples of GE-Algebras

An effect algebra of size 3

A GEA of size 4

+		a		С
0	0	а	b	С
а	a b	_	_	_
b	b	_	_	_
С	С	_	_	_

Why Study Effect Algebras?

Effect algebras have applications in the foundations of quantum mechanics and in probability theory.

D. J. Foulis and M. K. Bennett [1994]:

If a quantum-mechanical system $\mathcal S$ is represented in the usual way by a Hilbert space $\mathcal H$, then a self-adjoint operator A on $\mathcal H$ such that $0 \leq A \leq 1$ corresponds to an **effect** for $\mathcal S$. Effects are of significance in representing **unsharp** measurements or observations on the system $\mathcal S$, and effect valued measures play an important role in stochastic quantum mechanics.

Why Study Separation Algebras?

Let **A** be a separation algebra and for $X, Y \subseteq A$ define $X * Y = \{x + y \mid x \in X, y \in Y\}$, the complex lifting of +.

The complex algebra $(\mathcal{P}(A), \cup, \cap, \neg, \emptyset, A, *, \neg *, \{0\})$ is a complete and atomic Boolean algebra with a separating conjunction * and a residual $X - *Y = \{z \in A \mid X * \{z\} \subseteq Y\}$.

This is a Boolean bunched implication algebra.

In logical form, Boolean bunched implication logic is used in **separation logic** to reason about pointer structures and concurrency of programs.

Concrete examples of separation algebras arise from modeling a memory heap as partial functions f from \mathbb{N} (addresses) to V (values).

$$f*g$$
 is defined and $=f\cup g$ \iff $D(f)\cap D(g)=\emptyset$.

Generalized SAs and Generalized Pseudo EAs

Generalized separation algebras are cancellative partial monoids with

conjugation:
$$\exists z(x+z=y) \iff \exists w(w+x=y)$$

This axiom ensures that there is only **one** natural pre-order.

A generalized pseudo effect algebra (GPEA) is a positive GSA

This is a GPE-algebra.

$$\begin{aligned} \mathbf{B} &= (A \setminus \{c\}, + \upharpoonright_B, 0) \\ &+ \upharpoonright_B \mid 0 \quad a \quad b \quad 1 \\ \hline 0 \quad 0 \quad a \quad b \quad 1 \\ a \quad a \quad - \quad 1 \quad - \\ b \quad b \quad - \quad - \quad - \\ 1 \quad 1 \quad - \quad - \quad - \end{aligned}$$

This is a closed subalgebra of **A** that fails conjugation.

Downward Closed Subsets of GPE-Algebras

Lemma

Let $\mathbf{A} = (A, +, 0)$ be a GPE-algebra and $0 \in B \subseteq A$.

Define the downward closed subset $\downarrow B$ of B by

$$\downarrow B := \{ x \in A \mid x \le y \text{ for some } y \in B \}.$$

Then $\mathbf{B} = (\downarrow B, + \uparrow_{\downarrow B}, 0)$ is a GPE-algebra.

Example of a Downward Closed Subset

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	_	3	_	5	_	_
2	2	3	_	_	6	_	_
3	3	_	_	3	_	_	_
4	4	5	6	_	_	_	_
5	5	_	_	_	_	_	_
6	6	_	_	_	_	_	_

+	0	1	2 - - -	4	5
0	0	1	2	4	5
1	1	_	_	5	_
2	2	_	_	_	_
4	4	5	_	_	_
5	5		_	_	_

Products of GPE-aglebras (continued)

Lemma

The direct product of a family of GPE-algebras is also a GPE-algebra.

Simple Pastings of GPE-algebras (continued)

Lemma

The simple pasting of a family of GPE-algebras is also a GPE-algebra.

Subclasses and Expansions of GPE-algebras

Adding combinations of three independent axioms creates subclasses:

(com)
$$x + y = y + x$$
 (commutative)
(orth) $x + y = 1 \iff y = x^{\sim} \iff x = y^{-}$ (orthocomplement)
(cons) $x + x$ defined $\implies x = 0$ (consistent)

G = Generalized, S = Separation, P = Pseudo, E = Effect, O = Ortho

Examples

Examples

Generalized Effect Algebra

(Orthocomplementation Not Satisfied)

Effect Algebra

(Orthocomplementation Satisfied)

Examples

Pseudo Orthoalgebra (Commutativity Not Satisfied)

From Separation Algebras to Effect Algebras

An element v is *invertible* if there exists w such that vw = e = wv

 A^* denotes the set of invertible elements of a GS-algebra **A**.

The inverse of v, if it exists, is unique and is denoted by v^{-1} .

Lemma

Let **A** be a generalized separation algebra. Then

- A^* is the bottom equivalence class [e] of the poset $A/\equiv = (\{[x] : x \in A\}, \leq),$
- **2** $A^* = (A^*, \cdot, e, -1)$ is a (total) group and is a closed subalgebra of **A**,
- **3** $x \equiv y$ holds if and only if $x \in yA^*$, and
- \bullet = is the identity relation if and only if e is the only invertible element.

From Separation Algebras to Effect Algebras

Every separation algebra can be collapsed in a unique way to a largest generalized effect algebra.

Hence a substantial part of the structure theory of separation algebras is covered by results about generalized effect algebras.

Theorem

For a GS-algebra A,

- the relation \equiv is a closed congruence,
- $\mathbf{2} \mathbf{A}/\equiv is \ a \ GPE-algebra,$
- ullet the congruence classes of \equiv all have the same cardinality, and
- **1** If $h : A \to B$ is a homomorphism and B is a GPE-algebra then there exists a unique homomorphism $g : A/\equiv \to B$ such that $g \circ \gamma = h$ (where $\gamma : A \to A/\equiv$ is the canonical homomorphism $\gamma(x) = [x]$).

From abelian groups and effect algebras to separation algebras

Theorem

Let **G** be an abelian group and **B** a GE-algebra.

Then $\mathbf{A} = \mathbf{G} \times \mathbf{B}$ is a separation algebra with $\mathbf{A}^* = \mathbf{G} \times \{e\}$.

Similarly the product of a group and a GPE-algebra is a GS-algebra.

Proof.

The product of separation algebras is again a separation algebra since this class of algebras is defined by quasi-identities.

The element $(g, e) \in A$ has inverse (g^{-1}, e) .

Now let $b \in B$. If (g, b) has an inverse (h, c) then bc = e, hence by positivity of B we have b = e.

Therefore $\mathbf{A}^* = \mathbf{G} \times \{e\}$.

Building GPE-algebras

Theorem

Let $P = (P, \oplus, 0)$ be a GPEA. Let $P_m = P \cup \{m\}$ where $m \notin P$. Then $P_m = (P_m, +, 0)$ is a GPEA if and only if the following conditions hold:

- (1) For all $x, y \in P$, $x + y \in P$ iff $x \oplus y$ is defined, in which case $x + y = x \oplus y$.
- (2) m+0=m=0+m
- (3) m + x and x + m are undefined for all $x \in P_m \setminus \{0\}$
- (4) $x + y = m = x + z \implies y = z$ and $x + y = m = z + y \implies x = z$
- (5) For all $x, y \in P$, $x + y = m \implies \exists u, v \text{ s.t. } u + x = m = y + v$
- (6) $(x + y) + z = m \iff x + (y + z) = m$

Enumerating GPE-algebras: Initial Setup

Consider a GPE-algebra $P = (P, \oplus, 0)$.

The program generates a new GPE-algebra $\mathbf{P_m} = (P_m, +, 0)$, with $P_m = P \cup \{m\}$.

Initial rules for +:

- (1) For all $x, y \in P$, x + y is defined iff $x \oplus y$ is defined, in which case $x + y = x \oplus y$ (satisfies posi)
- (2) m + 0 = m = 0 + m (satisfies iden)
- (3) For all $x \in P_m$ such that $x \neq 0$, x + m and m + x are undefined
- (4) For all $x, y \in P$ such that $x \oplus y$ is undefined, x + y is not yet determined, which will be represented by x + y = N

Process of filling out the operation table

Checking for cancellativity, conjugation and associativity

A table is **cancellative** if each element appears no more than once in every row/column.

Cancellative

Not Cancellative

$$1+2=3$$

 $2+2=3$

Checking for Conjugation

A table is **conjugative** if for all i, j:

- each element defined in row i is also defined in column i
- each element defined in column j is also defined in row j.

Conjugative

Not Conjugative

$$1 + 2 = 3$$
 $\nexists u(u + 1 = 3)$
 $\nexists v(2 + v = 3)$

Checking for Associativity

A table is **associative** if for all $x, y, z \in P$:

```
• If (x + y) + z is undefined, then x + (y + z) is also undefined.
```

• If
$$(x + y) + z$$
 is defined, then $(x + y) + z = x + (y + z)$.

```
for all x,y,z in P_m where (x+y) is defined:
    if (x+y)+z is undefined:
        if y+z and x+(y+z) are defined:
            return False
    if (x+y)+z is defined:
        if y+z or x+(y+z) are undefined:
            return False
    if x+(y+z) != (x+y)+z:
        return False
```

return True

Counting (G)(P)(O) Effect algebras and Separation algebras

n	ОА	POA	GOA	EA	PEA	GPOA	GEA	SA	GPEA	GSA
2	1	1	1	1	1	1	1	2	1	2
3	0	0	1	1	1	1	2	3	2	3
4	1	1	2	3	3	2	5	8	5	8
5	0	1	2	4	5	3	12	13	13	14
6	1	2	4	10	12	7	35	39	42	48
7	0	2	8	14	19	19	119	120	171	172
8	2	5	18	40	52	68	496	507	1020	1037
9	0	4	42	60	84	466	2699	2703	11742	11749
10	2	10	156	172	240	8740	21888	21905	322918	
11	0	9	834	282	418		292496	292497		

Table: Number of partial algebras in each class

O = Ortho, P = Pseudo, G = Generalized, E = Effect, S = Separation

Further results about GPE-algebras

The **height** of an element *a* in a finite GPE-algebra is the length of a maximal path from 0 to *a* in the Hasse diagram of the partial order.

A set of elements of the same height make up a level.

The **atoms** of a GPE-algebra are the elements in level 1, i.e, they only have the bottom element 0 below them.

Lemma

Associativity holds automatically for naturally ordered partial algebras that have two levels or less.

Lemma

A GPE-algebra is a GE-algebra if and only if it has a generating set in which all elements commute.

Further results about GPE-algebras

Recall that every 1-generated group is commutative.

Theorem

Every 1- or 2-generated GPE-algebra is commutative.

Let $L(n_1, n_2, ..., n_k)$ denote the number of GPE-algebras (up to isomorphism) with level structure $(n_1, n_2, ..., n_k)$ and $n = 1 + \sum_{i=1}^k n_i$ number of elements.

The number of **integer partitions** p(n) for a positive integer n is the number of ways positive integers can sum to n, ignoring order.

We now show that the number of GPE-algebras of height ≤ 2 with cardinality n is given by the sum of p(k) for k = 1 to n - 2.

Further results about GPE-algebras

A partial operation + can be viewed as a coalgebra $\alpha: A \to \mathcal{P}(A^2)$ where $\alpha(x) = \{(y, z) \in A^2 \mid x = y + z\}.$

Lemma

For a GPE-algebra **A** and $x \in A$, the binary relation $\alpha(x)$ is a permutation of its domain, hence in the finite case the domain is partitioned into disjoint finite cycles.

Lemma

For any GPE-algebra of size $n \ge 3$, L(n-2,1) = L(n-3,1) + p(n-2).

Theorem

The number of GPE-algebra of cardinality n with level structure (n-2,1) is $\sum_{k=1}^{n-2} p(k)$.

Residuated posets from GPE-algebras

A residuated partially ordered monoid $(A, \leq, \cdot, e, \setminus, /)$ is a poset (A, \leq) , a monoid (A, \cdot, e) , and for all $x, y, z \in A$, $xy \leq z \Leftrightarrow y \leq x \setminus z \Leftrightarrow y \leq z / x$.

Definition

Let $\mathbf{A} = (A, +, 0)$ be a generalized pseudo-effect algebra.

Define $\bar{\mathbf{A}} = (A \cup \{\bot, \top\}, \cdot, e, \setminus, /)$ as follows:

- e = 0 and $\bot < x < \top$ for any $x \in A$
- $x \cdot y := x + y$ if x + y is defined, else $x \cdot y = \top$ for $x, y \in A$
- $y/x = z \iff y = z + x \text{ and } x \setminus y = z \iff y = x + z$
- $y/x = x \setminus y = \bot$ if $x \nleq y$
- $\perp/x = x \setminus \perp = x / \top = \top \setminus x = \perp$
- $\bot x = x \bot = \bot$ and $y \top = \top y = \top$ for $x, y \in A \cup \{\bot, \top\}$ with $y \ne \bot$

Residuated posets from GPE-algebras

Theorem (Rump, Yang 2014)

Let A be a GPE-algebra. Then \bar{A} is a residuated poset.

Corollary

Every GPE-algebra is an interval in some (total) residuated poset. A GPE-algebra \mathbf{A} is lattice-ordered $\iff \bar{\mathbf{A}}$ is a residuated lattice.

Pseudo-effect algebras and involutive residuated lattices

It is also possible to axiomatize the residuated po-monoids that uniquely correspond to GPE-algebras

A residuated poset is **involutive** if there exists an element d such that the terms $\sim x = x \setminus d$ and -x = d/x satisfy $-\infty x = x = \infty - x$.

Theorem

If $\bf A$ is a PE/PO-algebra, effect algebra or orthoalgebra, then $\bar{\bf A}$ is an involutive residuated poset.

Some References

- C. Calcagno, P. W. O'Hearn, and H. Yang, *Local action and abstract separation logic*, Proceedings of 22nd LICS, 2007, 366–378
- R. Dockins, A. Hobor and A. W. Appel, *A fresh look at separation algebras and share accounting*, Proceedings of APLAS 2009, LNCS 5904, 2009, 161–177
- A. Dvurecenskij and T. Vetterlein, *Pseudoeffect algebras. I. Basic properties*, International Journal of Theoretical Physics, 40 (3), 2001, 685–701
- D. J. Foulis and M. K. Bennett, *Effect algebras and unsharp quantum logics*, Found. Phys. **24**, (1994), 1325–1346
- N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices, An Algebraic Glimpse at Substructural Logics, Elsevier, Studies in Logic, 151, 2007
- W. Rump and Y. C. Yang, *Non-commutative logical algebras and algebraic quantales*, Annals of Pure and Applied Logic, **165**, (2014), 759–785

Thanks!